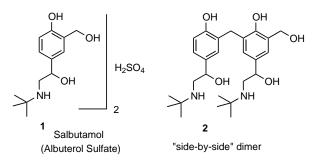


Tetrahedron Letters 43 (2002) 1135-1137

TETRAHEDRON LETTERS

Synthesis of a salbutamol dimer[†]


Nizar Haddad,* Yibo Xu, James A. Baron and Nathan K. Yee

Department of Chemical Development, Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd./PO Box 368, Ridgefield, CT 06877-0368, USA

Received 7 November 2001; accepted 12 December 2001

Abstract—First synthesis of the diastereomeric mixture of Salbutamol dimer (2) is described. The synthesis provides access to multi-gram quantities of 2 for reference supplies and further analytical and toxicology investigations. It also confirmed the proposed structure by comparison to authentic sample. © 2002 Elsevier Science Ltd. All rights reserved.

Salbutamol (1), a potent β_2 -adrenoceptor agonist, is effective as a bronchial smooth muscle relaxant. Currently it is considered, in its racemic form, as one of the most prescribed bronchodilators for the treatment of bronchial asthma.¹ Since its development in the late 1960's, the continuous effort for the separation and structure determination of related impurities,^{2,3} obtained during the synthesis or upon prolonged storage of the drug, is still of interest. Special attention was focused on the mixture of its dimeric 'side-by-side' impurities² **2**, usually detected in ca. 0.05–0.1% in salbutamol batches. To the best of our knowledge, there are neither reported synthesis nor unambiguous structure determination of these proposed dimeric structures (Fig. 1).

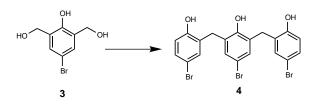
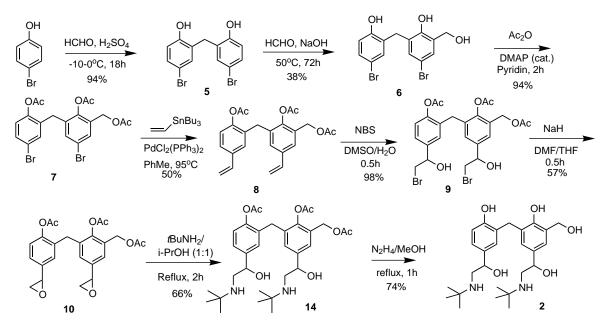


Figure 1.

In order to confirm the structures 2 and also provide an easy access to these compounds for reference supplies, further analytical and toxicology investigations, a synthesis of the diastereometric mixture was desirable. Herein, we describe the first synthesis of 2.

Initial efforts focused on the direct preparation of 2 via dimerization of Salbutamol under a variety of acidic conditions (HCl, pTsOH, CSA with different solvents and temperatures).^{4,5} Unfortunately, no traces of the desired product could be detected by HPLC upon comparison to authentic sample. The following synthesis of 2 was then developed.

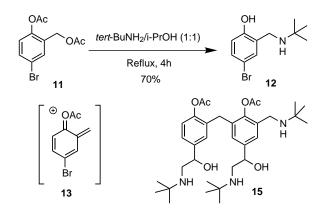
Two approaches were examined for the preparation of the key starting material 6: (a) Coupling of bromophenol with the commercially available triol **3** under acidic conditions. Unfortunately, double condensation product **4** and triol **3** were the major compounds detected in these attempts (Scheme 1); (b) Baekelite condensation of *p*-bromophenol with formaldehyde provided **5** in 94% yield.^{5a} Treatment of **5** with paraformaldehyde and NaOH provided **6** in 38% isolated yield.^{5b} Acetate protection of the triol was expected to hold and to increase the solubility of the intermediates throughout the synthesis. Treatment of **6** with acetic anhydride provided **7** in 94% yield.


Scheme 1.

Stille coupling^{3,6} of **7** with *tri-n*-butylvinyltin afforded **8** in 50% isolated yield. Direct epoxidation of **8** with MCPBA was first examined and resulted in low yield of the desired bis-epoxide **10**. Alternatively, **10** was prepared upon treatment of **8** with NBS in wet DMSO⁷ to

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(01)02354-1

^{*} Corresponding author.


[†] Presented in part at the 221st ACS National Meeting, San Diego, April 2001, ORGN 325.

give **9** in 98% yield, followed by cyclization with NaH to give **10** in 57% yield (Scheme 2).

A regioselective addition of $tBuNH_2$ to the epoxide was expected.^{3,8} However, it should be noted that treatment of **11** with $tBuNH_2$ in isopropanol under reflux for 4 h provided **12** in 70% isolated yield, presumably via intermediate **13** (Scheme 3). Interestingly, treatment of **10** with $tBuNH_2$ in isopropanol (1:1) under reflux for 2 h, provided **14** in 66% isolated yield with no detectable amount of **15** by NMR.

Scheme 3.

Hydrolysis of the acetate groups was examined under a variety of conditions including K_2CO_3 , NaOH, Al_2O_3 , KCN, Mg/MeOH and NaBH₄, in all cases the product could not be isolated in sufficient yield. However, reflux of **14** with hydrazine/MeOH afforded the desired final product (**2**) in 74% isolated yield after purification on C18-preparative column followed by crystallization from EtOAc.⁹

The NMR spectra of 2 was recorded in D_2O and almost complete overlap of chemical shifts of the

diastereomers was obtained. Careful comparison with authentic sample was carried out by ¹H NMR, MS and HPLC. Complete match was obtained in all these experiments, providing for the first time unambiguous confirmation of the chemical structure of **2**.

Acknowledgements

The authors acknowledge Dr. Karl Grozinger for useful discussion, Dr. Jan Glinski for authentic sample of 2 and Mr. Scot Campbell for assistance in the NMR.

References

- Bakale, R. P. Specialty Chem. Prod. Market Applic. 1995, 15, 249; Caira, M. R.; Hunter, R.; Nassimbeni, L. R.; Stevens, A. T. Tetrahedron: Asymmetry 1999, 10, 2175. Review on drug evaluation of Salbutamol, see: Stephen, A. H.; Clissold, S. P. Drugs 1989, 38, 77.
- Different 'side-by-side' dimeric structures were reported in Refs. 2a and 2b: (a) Altria, K. D. J. Chromatography 1993, 636, 125; Altria, K. D. J. Chromatography 1993, 634, 323; (b) Altria, K. D.; Luscombe, D. C. M. J. Pharm. Biomed. Anal. 1993, 11, 415; Rogan, M. M.; Altria, K. D.; Goodall, D. M. Electrophoresis 1994, 15, 808.
- 3. Yee, N. K.; Nummy, L. J.; Roth, P. R. Bioorg. Med. Chem. Lett. 1996, 6, 2279.
- (a) Gutsche, C. D.; No, K. H. J. Org. Chem. 1982, 47, 2708; (b) No, K.; Kim, J. E.; Kim, S. J. Bull. Korean Chem. Soc. 1996, 17, 869.
- (a) Hosein, H. G.; Ali Akbar, M. Helv. Chim. Acta; Eng. 1981, 64, 599; (b) No, K.; Kwon, K. M. Synthesis 1996, 1293.
- McKean, D. R.; Parrinello, G.; Renaldo, A. F.; Stille, J. K. J. Org. Chem. 1987, 52, 422.
- 7. Tanner, D. D.; Stein, A. R. J. Org. Chem. 1988, 53, 1642.

- 8. Hett, R.; Stare, R.; Helquist, P. Tetrahedron Lett. 1994, 35, 9375.
- All new compounds were characterized by ¹H, ¹³C NMR, and MS spectroscopy. Dimer **2**: ¹H NMR (500.1325 MHz, D₂O) δ: 1.34 (18H, s), 3.19 (3H, s), 3.86 (2H, s), 4.62 (2H, s), 4.81 (2H, d, J=6.5 Hz), 6.74 (1H, d, J=8.64

Hz), 7.08 (1H, d, J=7.7 Hz), 7.13 (1H, s), 7.26 (1H, s), 7.29 (1H, s); ¹³C NMR (125.7574 MHz, CDCl₃) δ : 27.7, 35.5, 50.4, 60.0, 63.2, 72.3 (×2), 120.7, 127.5, 128.7, 129.9, 130.5, 131.5, 131.7, 131.8, 133.2, 133.4, 159.2, 161.7; HRMS calcd for (M+H)⁺ C₂₆H₄₁N₂O₅: 461.3020, found 461.3015.